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conditions (25) and (27), the expression (76) for neutral 
atoms takes the form 

<r2) = 6Z/is %^(x)dx-\CX* ] • (77) 

where C is given by (28). The integral occurring in (77) 
was evaluated numerically for each value of Z, and the 
value of X obtained from extrapolation to Z—N—0 of 
the X versus (Z—N)/Z data. The magnetic suscepti
bilities and electric polarizabilities were then computed 
by means of (73) and (74). The corresponding quantities 
were also computed for the TF and TFD models.30 The 
results are presented in Tables I and II and compared 

TABLE I. Magnetic susceptibilities x (10~6 cm3) 
for atoms of various elements. 

Ar Cr Kr Xe 

TF model 
TFD model 
Present model 
Hartree field 
Experimental 

81.0 
22.1 
20.88 
20.6 
19.5 

25.96 

102.0 
35.0 
33.00 

28.0 

117.0 
45.5 
43.61 

42.4 

59.25 

30 The TFD model calculations were based on the potential 
tables given by L. H. Thomas, J. Chem. Phys. 22, 1758 (1954). 

TABLE II . Atomic polarizabilities a (10 24 cm3) 
for atoms of various elements. 

Ar Cr Kr Xe 

TF model 
TFD model 
Present model 
Empirical 

47.78 
2.85 
2.54 
1.65 

43.41 

2.95 
. . . 

37.92 
3.60 
3.17 
2.50 

33.13 
4.02 
3.70 
4.10 

27.74 

4.00 

with experiment, the latter values being obtained from 
Ref. 4. 

We see that in general our model leads to some im
provement in the agreement with experiment although 
the agreement is not yet quantitatively precise. From 
the results for argon we may observe that our model 
leads to much the same value for the magnetic suscepti
bility as that obtained by the much more cumbersome 
method of the Hartree self-consistent field. 
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2P -> IS Transitions in Muonic Tl, Pb, and Bi*f 
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The mixing of states of a muonic atom with the nucleus in an excited state into the states with the nucleus 
in the ground state, for natural Tl, Pb, and Bi (due to the multipole interactions between the nucleus and 
the muon), is calculated. This effect fails to explain the ratio of the number of 2Pm —> ISm to 2P3/2 —* ISm 
transitions (expected to be 0.5 in the absence of mixing) as observed by Frati and Rainwater. In Bi, the 
calculation shows that the mixing is negligible, but the observed ratio was 0.75d=0.05; in Tl (where the ratio 
was 0.97±0.09) the off-diagonal matrix elements of the Hamiltonian, required for this effect to be the sole 
cause of the change of ratio, differs from theory by two standard deviations. For Pb the observed ratio 
agrees with theory and the calculated mixing is, indeed, negligible. If we assume that some unknown effect 
is acting in Bi and is of the same order of magnitude in Tl, then the difference between the ratio in Tl from 
that in Bi is explained by the above mixing. This assumption is suggested by the fact that Tl is one proton 
below and Bi is one proton above a magic number closed shell (82). We suppose that this unknown effect 
is absent in Pb since it is a magic number nucleus (82 protons). It is proven that nonresonant effects, due to 
spin-independent operators, cannot affect the radiative-transition sum rules. This is applied to nonresonant 
hyperfine mixing and a hypothetical nuclear-Auger effect. 

I 
I. INTRODUCTION 

N recent muonic atom studies by Frati and Rain
water,1 the relative number of 2Py2 —> 16*1/2 transi-

* Research partially supported by the U. S. Atomic Energy 
Commission. 

f Research will be the basis of a Doctoral dissertation. 
j Presently a Pfister Fellow. 
1W. Frati and J. Rainwater, Phys. Rev. 128, 2360 (1962). 

(Theoretical values here were calculated by K. W. Ford and J. G. 
Wills; their values for Bi have been corrected.) 

tions to 2P3/2—> IS 1/2 transitions [W(2P —» 1S)~] is re
ported for various atoms. The values obtained for 
natural Tl and Bi are well above the value which is pre
dicted by the sum rules. (Since the relative population 
of the 2Fi/2 to 2P3/2 states measured in the 3D—> 2P 
transitions [W(3D—» 2P)] was approximately | , the 
sum rules would have predicted that W(2P—> 15) had 
approximately the same value.} The mechanism in
voked to explain this is the mixing of the state 12Pi/2 
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muon, nucleus in first excited state (1)] into the state 
| 2P3 / 2 muon, nucleus in ground state (0)]. In Tl, this 
could occur because the states are nearly degenerate. In 
Bi, a large off-diagonal matrix element of the Hamil-
tonian could mix the states even though they are not 
close in energy; the large spin of the nucleus (f) is 
the supposed cause of this large off-diagonal element. 
The |2P,0] have been populated from higher \nLfi~\ 
levels (mostly from the |3Z),0] levels), whereas the 
nucleus is not excited by the usual radiative or Auger 
transitions.2 This resonance phenomenon has the effect 
of: (1) bleeding the |2P3 /2 ,0] level and (2) feeding the 
12Pi /2,l] level. Thus, the relative number of 2P1/2—»I.S1/2 
radiative transitions is enhanced, since the nuclear life
times are of the order of 10~~8 sec, whereas these transi
tions occur in approximately 10~18 sec.3 The energies of 
the true eigenstates are displaced from those calculated 
for the unmixed levels, but the resulting transition lines, 
of non-negligible intensity, are shifted by amounts less 
than or equal to \ of the 2P fine-structure splitting (See 
Figs. 2 and 3). Since the experiment did not resolve the 
fine structure lines (except by assuming two lines were 
present and matching the spectrum with an assumed 
line shape), the energy shifts of the true eigenlevels 
could not be detected. The observed values of the 
"2P3/2—-> IS1/2 energy" and the "fine-structure splitting" 
can be calculated, once one has a means of averaging the 
predicted spectrum into two lines. 

In Tl, assuming the resonance to be the cause of the 
discrepancy of the measured W(2P —> IS) from the ex
pected value, we will predict the off-diagonal matrix 
elements (0) and the difference between the diagonal 
elements (b) of the Hamiltonian. The energy difference 
between the unperturbed 12P3/2,0] level and the 115*1/2,0] 
level (c) will also be predicted from the experimentally 
measured quantities. The quantities b and c will be 
shown to agree with the theoretically calculated values 
(Ford and Wills as reported in Ref. 1, Table II) , the 
former agreeing within one standard deviation, the 
latter within 1.2 standard deviations. The off-diagonal 
elements will be reduced to one parameter. An argument 
of "better-than-order-of-magnitude" validity shall pro
vide upper and lower limits for this parameter (Ox of 
Table I I ) ; the lower limit is expected to be closer to the 
correct value. The value required by the experiment will 
be seen to miss agreement with the lower limit by two 
standard deviations. This, in itself, would not be very 
poor agreement, but the presence of some other effect is 
evident in Bi. The energy of the first excited nuclear 
level of Bi is roughly five times the fine-structure 
splitting, and a shell-model calculation has shown this 
effect to be negligible for this atom. 

The possible causes of the observed discrepancies 
which have been considered are: (a) The effect of the 

2 V. L. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1953). 
3 B. A. Jacobsohn, Phys. Rev. 96,1637 (1954). The factor 2.3 for 

the point quadrupole nucleus has been calculated for Z = S2 and 
i? = 1.2 XIO-13^1 '3 cm by the present author. 
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radiative width of the levels on the diagonalization, 
which has been shown to be negligible. (The width is 
less than 1.2 keV which is to be compared with 17 keV 
energies TL) (b) The magnetic multipole interactions, 
which are negligible since the magnetic dipole inter
action is smaller than the electric quadrupole interaction 
by a factor of 102, making it negligible in comparison to 
the radiation width. Furthermore, to first approxima
tion, it cannot change the spin of the nucleus, (c) Non-
resonant electric hyperfine mixing of states, which will 
be shown to have no effect on the relative transition 
rates, (d) A nuclear Auger effect with nonradiative 
2Pj —* IS transitions, which is energetically possible in 
Bi, but will be shown to have no effect upon the relative 
number of radiative 2Pj —> IS transitions. [See the 
Appendix for the treatment of (c) and (d) above.] 

The effect which causes Bi to have W ( 2 P - » 1 £ ) 
equal to 0.75± 0.05 may be acting in the Tl atom, since 
the former is one proton above and the latter is one 
proton below a major closed shell. We would expect Pb 
to behave normally since it is a major closed shell 
nucleus (82 protons). This is indeed the case as the 
experiment has shown that PT(2P-> 16') = 0.49±0.07 
for Pb which agrees with the theoretical expectation. If 
we assume that in thallium, W(2P—± IS) = 0.75 before 
we take the resonance into account, then the observed 
value for W(2P —»IS) requires an off-diagonal element 
which agrees with the theoretical expectation. (The 
predicted values of b and c are not significantly 
changed.) 

II. GENERAL THEORY 

When the muonic atom is treated as a hydrogen-like 
problem with Bohr-type orbits about an extended 
spherical nucleus,2,4 the Coulomb interaction between 
the muon and the protons of the nucleus is assumed to 
be of the form (—ej'p(r')/\t—if\dzr'), where r' is the 
nuclear position and r is the muon position. The nuclear 
charge distribution p(rf) has been assumed to be 
spherically symmetric. By the usual expansion of 
( | r—r ' | ) _ 1 in multipoles, we have (after doing the 
angular integration) 

V{x)^-e( dr'[r>Jp(r')[rg-]-^ V(r), (1) 

where rg is the greater of r and / . If p(r') is zero when 
r'>R, then for r>R we have V(r)= (—Ze2/r), as 
expected. [The V(r) for r<R may be calculated using 
Eq. (1).] The true interaction, J9r

c=Z)t(—e2/\r— r / | ) , 
i running from 1 to Z (where r / is the position of the ith 
proton and r is the muon position), essentially has been 
averaged over the nuclear state. One defines this average 
as V(r) with (#jy|ilc|^2v)= V(t), which is assumed to be 
only a function of radial distance.4 The difference be
tween this and the true interaction must be treated as a 
perturbation, mixing the eigenstates of the average 

4 L. N. Cooper and E. M. Henley, Phys. Rev. 92, 801 (1953). 
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FIG. 1. Tl level scheme. This figure is not drawn to scale. The 
levels 0 and y, indicated by dashed lines, are eigenlevels of the un
perturbed (hydrogen-like) Hamiltonian. The true eigenlevels are 
designated ^F± as discussed in the text. In the symbols | nLj,N2> 
the first symbols refer to the usual muon quantum numbers; 
when N is zero the nucleus is in its ground state (Si/2) and when JV 
is the one the nucleus is in its first excited stated (#3/2). The 
2P —-> 15 transition lines are labelled with numbers referring to the 
lines of Table I, the subscripts of which are the F values of the 
corresponding initial energy levels. I t is easily seen from the 
figure that A = Ex — b. 

interaction. The perturbation, £T' = 2Zi(—-e2/|r— r / | ) 
— V(f), can be expanded in multipoles in the usual way4 

[only the zeroth multipole is altered by the V(r)~}. Using 
the standard techniques of algebra,5 it can be shown that 

( ^ | ^ / | ^ / ) = ( - ) w + J - 1 / 2 

X [ (2J+1) ( 2 / ' + 1 ) (2L+1) (2L'+1)]1'2 

X 
[ / / ' lUF J IUL I L'l 

iu L ilii r j'Wo 0 of 
XKI(I,I')5FF'?>MFMF' > (2) 

where / is the multipole, in the expansion of H', being 
considered. Here we have used the usual spectroscopic 
notation, L and / referring to muon quantum numbers, 
/ to the nuclear angular momentum, F and MF to the 
total angular momentum of the atom and its z com
ponent, respectively, for the state ^ ; similarly the 
primed letters refer to the state S&7. The K'S are the 
reduced nuclear matrix elements times the radial 
integrals, and will be discussed later. The 3-j and 6-j 

5 A. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, New Jersey, 1957). See 
Ref. 9 for tables of the 3-j and 6-j symbols. 

symbols are defined by Edmonds.5 These matrix ele
ments are independent of MF, and, therefore, this 
interaction cannot remove the MF degeneracy. Note 
that these matrix elements are diagonal in F and MV as 
expected for an interaction which is an over-all scalar. 

We now make the following definition: 

OF=Y,I(*F\HI'\¥F') when I^V. (3) 

From Eq. (2), we see that 

\F J I 
0F = T.Ci\ 

1 \i r r 
(30 

/ 

for / = 1 

3C W C C 

I i.e., we have for l>2 or 1=0, 

•( j 0 j)=o i"E < , '< 2 >} 

' = 0 and 

where the constants (Ci) are independent of F. For the 
muon states 2P3/2 and 2Pi /2, only the term with / = 2 is 
nonzero in OF ; for / > 2 we have zero because / cannot 
connect a state which has L= 1 with another whose L 
is one (or a 7 = f with a J=\ state), for / = 1 parity 
conservation gives zero, and for / = 0 we have zero be
cause we cannot connect a state of / = § with one of 

£ A / 1 

For Tl, the amount of mixing between the 12P3/2,7Vr] 
and the 12P1/2,N], the 12P3/2,1] and the 12P/,0], or the 
|2Pj/ ,0] and the | 2 P j / , l ] levels is negligible. This is 
true because their energy spread (the difference of their 
diagonal matrix elements of the Hamiltonian) is larger 
than the off-diagonal matrix elements connecting them, 
by a factor greater than 10. Thus, only the | 2P3/2,0] and 
the 12Pi/2,l] states of the same F and MF can be mixed, 
and the Hamiltonian may be factored into a set of un
connected two by two matrices. By the usual treatment 
of states whose off-diagonal elements are not small in 
comparison to their energy separation, we have 

•= (l-aF
2yi2^F+aF^yF, 

•=aF^F-{l-aF2)m^F, 

EF±=Ee+iAF±H&F2+M)F2) 

(4) 
1/2 

for the true eigenstates and their eigenvalues, where 

aF
2=[_^F+h(AF2+±OF2)ll2J 

X [{ J A F + § ( A ^ + w y ' T + O * 2 ] " " 1 • (40 

The symbols PF and JF represent the states 12P3/2,0]^ 
and 12Pi/2,l]i?, respectively (See Fig. 1); the differences 
of the diagonal terms of the Hamiltonian matrix have 
been represented by AF (A F = (7F\H|TF)— (PF\H\pF)) 
and O F is the off-diagonal matrix element defined in 
Eq. (3). Note that the quantity (1 — ap2) is a measure 
of the amount of mixing occurring. The MF degeneracy 
has not been removed, and so Eq. (4) holds for each 
MF substate of the wave functions, with no mixing of 
states of different MF* For convenience, we define 

V = 4 ( ( V A F ) 2 + 1 , (4'0 
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which yields 
aF*=(l+yF)(2yF)~\ 

and 
£i? ± =E / 3+jAi rdbcOF, With G0F=^AFyF. 

For the usual electric dipole transition from a statis
tically populated state & to a state ^ , with the same 
nuclear angular momentum (1=1'), we have 

= v*\rnL,n>L>\2(2F+l)(2F'+l) 

X (2J+1) (2/ '+1) (2L+1) (2L'+1) 

j/L 1 £ ' \ J / / ' l l f ^ 1 ^ ' } | 2 

l \0 0 0/ lZ, ' L j i t / ' / 7 J | 

for the transition probability per unit time (<£); where 
v is the frequency of transition; r is a radial integral; 
the n, L, J, and F are the usual quantum numbers (as 
discussed before) for ^ ; similarly the primed symbols 
are those quantum numbers for "$?'. The 3-j and 6-j 
symbols are denned in Edmonds5; the proportionality 
constant is a universal constant. If the v dependence is 
neglected, we may sum over F' and J' (of the initial 
level) to derive the sum rules 

£ F ' . . r $ « C ( 2 F + l ) , (50 

for the total intensity to a given level, from a set of 
levels of definite n' and Z/. Here C is independent of / 
and I (as long as the level may be reached from the 
upper levels and 1=1'). 

If the nucleus is in its ground state when the muon is 
in any of the higher shells, the muon transition to the 
IF levels will populate each in proportion to the ab
solute square of the coefficient of its component with 
the nucleus in the ground state. From the sum rules 
[Eq. (5')] and Eq. (4), we see that the relative popula
tions of ^TF± may be written: 

Population of ¥*+« (2F+l)(l-aF
2), 

(6) 
Population of *F-<*: (2F+l)aF\ 

These must be corrected for the v dependence of $, as 
will be discussed below. 

If one sums Eq. (5) over F, assuming v to be inde
pendent of F (the final level's total angular momentum) 
we have: 

£ $ ex „3 (2F'+1) (2J+1) (2L'+1) (2L+1) 
F 

\/L 1 L\[J J' 1112 

l \0 0 0 / l z / L JJl 

{Note that if we sum Eq. (7) over Ff, assuming vz inde
pendent of F', we find that (Y,FF'&) is equal to (27+1) 
times the result obtained when the nucleus is ignored 
[since E.F'(2i^+l)= (2 /+ l ) (2 / '+ l ) ] .} For the 
IF —* IS transition, v is independent of F and we have 

/ = i , L=0, L ' = l , r = 4 or f, » = 1 , and » '=2 ; the 
absolute square of the 6-j symbol in Eq. (7) has the 
same numerical value for each value of / ' . Therefore, 
we may write 

X>$cc(2F '+ l> 3 (70 

for the 2P —> \S transition. The proportionality con
stant is independent of / ' and I (for transitions with 

In the derivations of Eqs. (5) and (7), we have 
assumed the initial levels to have definite values of J' 
and V = L If the initial state is a mixture of states, the 
right-hand side of each of these equations must be multi
plied by the absolute square of the coefficient of the 
component of the initial state with V=Iy and the primed 
quantum numbers are to be taken as those of this 
component. We have also summed over MF, which 
assumes the relative population of each initial F' level 
is equal to (2J?'+1). In general, the intensity of a line 
from a mixed level is proportional to the product of the 
absolute square of the matrix element for the transition 
and the relative population of the initial level. For our 
IF —> IS transitions we have 

In tens i ty= /^ , (7") 

where the index i refers to the lines shown in Fig. 1. The 
$i are defined in Eq. (70 and the fi (for each i) is the 
product of the absolute square of the coefficient of the 
component of the initial level whose V is equal to I} and 
the actual relative population of the initial level divided 
by (2F'+1). [In Jacobsohn's6 notation we have 

III. FREQUENCY DEPENDENCE OF THE 
TRANSITION RATES 

If a meson has only one mode of radiative decay, the 
relative number of such events (which is actually what 
has been measured) is not changed by the v dependence; 
only the rate is changed. However, if there are two 
competing modes of radiative decay from a given level, 
we must take this v dependence into account. 

- = - ( - ) , (8) 

where A{ is the actual number decaying through mode i, 
Si is the number assigned by the sum rules [Eq. (50] to 
the decay through mode i, and vi is the corresponding 
frequency of transition. If we demand that the total 
number of particles being discussed remain the same, 
then ^iAi^Y^iSiy and we can write A\=Si-\-e and 
A2=S2~e, with €>0 if vi>v2. Thus, we may write 

Si+e Si/vi\* 

If we look at the mechanism which feeds the ^^ 
6 See Ref. 3, Eqs. (16) to (18), his / is our F and his j is our / . 
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levels, we see that we must change Eq. (6) so that the 
populations are 

(2F+l)(l-aF
2-8F) for VF+ 

and (60 
(2F+l)(aF

2+8F) for yF~, 

where we have replaced the corrections denoted by e in 
Eq. (8;) by (2F+l)dF. 

If we assume the level is fed from an n=3 level, we 
get the upper limits of 8F. Applying Eq. (80 to this case 
we have 

(1 — aF
2— 8F)/ (aF

2+8F) 
= (l-aF%(v+)PJ/(a/)l(v-)FJ, (9) 

where (V^F are the energies of transition from the 3D 
level to S^F^, respectively. 

Now from Eqs. (60, (4), and (70 we see that 

(f2)F=aF
2(aF

2+5F), 
(fz)F=(l-aF

2)(l-aF
2-8F), (10) 

(U)F= (l — aF
2)(aF

2+8F), 
(fb)F=aF

2(l—aF
2— 8F), 

and Si= (2F+l)fi for the lines designated in Fig. 1. 
We can also calculate the relative number of muons 

fed into the |2Pi/2,0] state from the |3Z),0] levels 
{W(3D-+2P)}. If there are initially 15 muons in the 
3D levels, and we assume a statistical distribution, then 
there will be 9 in the 3Z)5/2 level and 6 in the 3Z>3/2 level. 
The 9 are all fed to the |2P3/2,0] level, in an electric 
dipole transition. The 6 can go into the 2P3/2 or 2P i /2 
level; the number assigned to the 2P3/2 level by the sum 
rules is 1. [Thus, the sum rules result in 10 muons being 
fed to the 2P3/2 and 5 to the 2P i /2 level, giving 
W(3D —» IP) = J.] We must demand, however, that Eq. 
(80 be employed, using 5i=5, 5 2 =1, v(3Z}3/2 —» 2P3/2) 
==*% and v{3Dzi2—> 2Pi/2)= vi. From the experiment 
and experimentally determined value for b, we have: 
&z/i= 2.605 MeV and hv2= 2.417 MeV. This results in 
the value of e being 0.1735 which yields W(3D-+ IP) 
= (5+e)(9+l-e)-1=0.5265. This value of W(3D->2P) 
agrees with that observed1 for Tl (0.53±0.03) and for 
Pb (0.51±0.02). (The Bi209 result (0.59±0.02) is already 
explained by a capture y ray, in Ref. 1.) If this effect had 
occurred in the feeding of the 3D level, W(3D—+ 2P) 
would be even greater. 

Since ^fp± each have two different modes of decay, 
we can apply Eq. (80 using Eq. (10) and get 

{(2F+l)aF
2(aF

2+8F)+eF-} 
X{(2P+l)( l -^/) (aF

2+^)-e^-}- 1 

= {(2F+l)aF
2(aF

2+8F)(v2)F*} 
X{(2F+l)(l-aF

2)(aF
2+8F)(v,)/}~\ 

and (11) 

{{2F+l)(l-aF
2)(l-aF

2-8F)+eF+} 
X{(2F+l)aF

2(l-aF
2-8F)-eF+}-1 

= {(2F+l)(l-aF
2)(l-aF

2-8F)(v8)F*} 
X{(2F+l)aF

2(l-aF
2-8F)(v,)/}~\ 

for the lines of Fig. 1. The 8F were denned in Eqs. (60 
and (9) and the eF

± are defined by Eq. (11). 
The average intensity of a composite line will be 

assumed to be the sum of the intensities of its compo
nents ; the energy of transition will be the average energy 
of its components, each weighted by its relative 
intensity. From Figs. 1 and 2 we see that line I is 
made up of lines 1, 4, and 5 and line II is made up of 
lines 2 and 3. 

Thus, we have 

4i=(2Jo+l) (2J a +l)(£Vi) 
+ E F - C ( / 4 ) F ( 2 P + 1 ) - € F - ] 

+ I > [ ( / 6 M 2 F + 1 ) - € F + ] 
and (12) 

^ I I = E F - [ ( / 2 ) F ( 2 P + 1 ) + 6 F - ] 

+ E F + [ ( / 3 ) F ( 2 P + 1 ) + € F + ] . 

Here (2 / 0 +l ) (2 / a +l ) is the multiplicity of level a (see 
Fig. 1), U is the relative number of muons making 
radiative transitions from a to 115'i/2,0] (compared to 
the total number making these radiative transitions 
from sSrF

± to 115i/2,0 or 1]), and we have divided by 
that value | assumed by the sum rules. In the absence 
of a resonance, W(2P —> IS) would be U. If we assume 
that the 2P level was populated by random processes 
and the muons all made radiative transitions to the IS 
level, then we expect to have a statistical distribution 
with U—\. If we assume that the muons reach the 2P 
level after a radiative cascade, the distribution is slightly 
different than the statistical one. The v dependence will 
always cause more feeding of the lower / level (of a 
given n and L) than the sum rules predict. This im
balance will be propagated to the (w=l, L = l ) level, 
since most of the transitions are from states of 
(Ll—n'— 1) to states of {L—n— 1), which have the 
greatest multiplicities in their respective shells. The 
impoverished upper / level feeds the next state's 
upper / level (via electric dipole transitions) which is, 
therefore, further impoverished. Thus, a radiative 
cascade implies that U~W(3D —> 2P), and this will be 
denoted by "Case I." 

IV. THE NUCLEUS AND THE OFF-DIAGONAL MATRIX 
ELEMENTS OF THE HAMILTONIAN 

The radial integral times the reduced nuclear matrix 
element, denoted by KI(I,I') in Eq. (2), can be related 
to the reduced transition probability for exciting the 
nucleus from a state whose spin is I to one of V. We have 
shown that only 1=2 in Eq. (2) gives nonzero for the 
2P states under consideration, and therefore, we are 
speaking of the quadrupole reduced transition proba
bility, BX(E2), as denned by Jacobsohn.3 Following the 
arguments of Wheeler,7 Wilets,8 and Jacobsohn,3 we 
assume the quadrupole distribution of the nucleus to 

7 J. A. Wheeler, Phys. Rev. 92, 812 (1953). 
8 L. Wilets, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 

29, No. 3, 9 (1954), Eq. (14). 
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be localized on its surface (Rainwater model). The 
sensitivity of the calculation to this assumption is 
shown to be small for a IP muon, since only where the 
muon wave function is to be evaluated inside the 
nucleus is the distribution of the quadrupole moment 
involved. [Assuming the quadrupole distribution to be 
concentrated at the center increases the result by a 
factor of only 2.3.3] Using this as a "better-than-order-
of-magnitude" estimate we can determine upper and 
lower limits for |Oj?|. In a manner similar to Jacob-
sohn's3'9 treatment we rind: 

I K2(/,/01 = I t(BlE2ye>) (4ir/S) (2/o+1)]1 / 2 

X<£»L|g2|-R»L>|, (13) 

with g2= — (e2/rz)P(I}I'), where the | RnL) are the muon 
radial functions and a radial integral is to be done; 
P (/,/ ') is the penetration factor.3-7 Of course P is one 
for r>R [see Eq. (1)] and P is equal to (r/R)5 when 
r is less than R, for the Rainwater model3,7 described 
above. I t has been shown,7 using Coulomb wave func
tions, that 

g2= (R2P\ g21 R2P)= 5(Z/237)3 / , MeV/b , (14) 

where fq= (1+O.lx2) - 2 and x=RZ(jLe2fr2; R is the 
"nuclear radius" and /x is the muon's mass. This is 
expected to be poor for high-Z elements but was only 
6% higher than the results obtained from the Fitch and 
Rainwater wave functions for Pb208.8 

V. NATURAL SAMPLES*0 

A. Bismuth 

Natural Bi is 100% Bi209. The coupling of the one 
extra proton with the surface of the double magic-
number core is known to be small. This conclusion may 
be drawn from the fact that the measured quadrupole 
moment is of the order of the single particle value, and 
much smaller than that expected for the hydrodynamic 
model.11 A shell-model calculation shows that the off-
diagonal matrix elements from the ground | ~ to the 
first excited | ~ state are less than 3 keV. The first 
excited level is 900 keV above ground and, therefore, 
AF=EX— b~ 700 keV. Thus, the perturbation treatment 
of the Appendix includes this state and no resonance is 
involved. Excitation of the core is seen to require more 
than 2.6 MeV (the first excited state of Pb208, which is 
a 3~~, and cannot be reached by even multipole inter
actions). Even if O were a factor of 10 times the shell-
model off-diagonal elements, the perturbation treatment 
still would apply. Note that A is much greater than b. 
Therefore, the mixing of the 12P3/2,1] into the (2Pi /2,0] 

9 M. Rotenberg et al., The 3-j and 6-j Symbols (Technology 
Press, Cambridge, Massachusetts, 1959). 

10 All experimental numbers are taken from Nuclear Data Sheets, 
compiled by K. Way et al. (Printing and Publishing Office, National 
Academy of Sciences-National Research Council, Washington 25, 
D. C ) , and the references quoted therein. 

11 A. Bohr and B. R. Mottleson, Kgl. Danske Videnskab. 
Selskab, Mat. Fys. Medd. 27, No. 16 (1953). 
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state would almost cancel the effect of the /?, y mixing 
upon W(2P —* IS), even when perturbation theory is 
not valid. 

B. Lead 

Natural lead is made up of 52.3% Pb208, 22.6% Pb207, 
23.6% Pb206, and 1.5% Pb204. No excited state of the 
Pb208 nucleus has been found which can be connected 
to the ground state by our quadrupole interaction. Thus, 
A F is larger than 4 MeV and no resonance is expected. 

In Pb207 there are two low-lying excited states which 
can be connected to the ground state J " by the inter
action. The f~ level, at 0.894 MeV above ground, is 
adequately treated by perturbation theory. This may 
be concluded by comparison with Bi209. A similar level 
in that nucleus has been shown to be amenable to a 
perturbation theory treatment. In the Pb207 nucleus, the 
extra-core particle is a neutron hole, and the interaction 
is now due to the recoil of the core protons. Therefore, 
the effect should not be appreciably larger. Upon 
examination of the observed reduced transition proba
bility for exciting the f~~, 0.570-MeV level we find 
BX(E2) = 0.028X 10-48 cm4. Only the F= 2 level is mixed 
here, i.e., |2P 3 / 2 ; I=\~] and |2Pi / 2 ; ^ = f ] have only 
P = 2 in common. From Eqs. (2), (3), and (13) we 
have5 '9 | 0 2 | = (2[5]1/2/25) * ( / , / ' ) «6 .0 keV. Thus, we 
find that 4(02/A2)2«10~3 , and this state is included in 
our perturbation treatment. 

In Pb206 the first excited state is a 2+ at 0.803 MeV 
above the ground state, 0+ . Using the value BX(E2) 
= 0.11X 10~48 cm4, and the fact that only the F= f state 
is mixed, we find: | 0 3 / 2 | ~9 .4 keV, and 4(03/2/A)2 

«10~3 . Indeed, the perturbation theory is valid. 
In Pb204 the first excited state is a 2+ at 0.899 MeV 

above the ground state, 0+. This is very much like the 
Pb206 situation. Even if its BX(E2) were a factor of 10 
greater, the effect would still remain within the realm 
of perturbation theory. Since only 1.5% of our sample 
was this isotope, even an anomalous Bx would have little 
effect on the experimental results. 

The "sum effect" (See Appendix) thus includes all the 
states of our Pb sample, and our Bi sample as well 
[ci. subsection (A)]. 

C. Natural Thallium 

Natural Tl is made up of 29.5% Tl203 and 70.5% Tl205. 
The ground states of both these isotopes are J + levels. 

In Tl203, the known low-lying excited states are a f+ 

at 0.279 MeV and a §+ at 0.679 MeV above ground. The 
second excited state has 5X(£2) = 0.210X10-48 cm4. We 
find only F= 2 states in common with the ground states 
(as in Pb207). I t is easily seen, using <72~8.9X10-2 

MeV/b, that \02\ is about 12 keV. Since A is approxi
mately 490 keV, the perturbation treatment is valid. 
The energy of the first excited state is close enough to 
the fine-structure splitting to warrant a more exact 
treatment. 
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from Eq. (2), 

In Tl205, the excited levels have the same spin and 
parity assignments as the corresponding Tl203 levels, but 
their energies are 0.205 and 0.615 MeV, respectively. 
The second excited state has J3s(£2):=0.114X10--48cm4, 
yielding | 0 2 | « 1 6 keV. Again the perturbation treat
ment is valid! 

The first excited level (in both isotopes) may be con
sidered to be in resonance with the ground level, since 
A is of the order of the off-diagonal elements. 

The ground level of the nucleus is an 5i/2 state and 
the first excited level is a D3 /2 state. (These are shell-
model assignments; the I 's have been measured.) I t is 
easy to see that ((3\Hif\(3) = 0=(y\Hi'\y) for 1^0: 
Since an S state has no multipole moments, the first 
equality holds; since a 2P1 / 2 state can have nonzero 

expectation value only for operators whose l< 2 as seen 

. r 1 1 = 0 f ° r ^ ^ and, if parity is 

to be conserved, an / = 1 operator has zero expectation 

value in this level in Eq. (2) we have ( ) = 0 

L \o o 07 
the second equality holds. Only the spherically sym
metric part of the Hamiltonian has nonzero diagonal 
matrix elements and these are the originally calculated 
energies, which are independent of F. (The corrections, 
due to errors in the nuclear charge distribution used, 
are attenuated by the smallness of the IP wave func
tions inside the nucleus.) Therefore, we have A^=A 
= Ex—b for thallium, where Ex is the nuclear excitation 
energy, b is the originally calculated fine structure 
splitting, and A is independent of F. 

For Tl we have Fp= 1, 2 and F T = 1, 2, therefore, there 
is mixing in the states Fp=l = Fy and Fp=2 = F7. From 
Eq. (3') we see that 

S |0 2 | = | O i | . (15) 

From Eqs. (15) and (4") we see that 

25(y a »-l ) = : y i s - l , (150 

so that only one parameter (y{) is free. 
From Eqs. (2) and (3) it follows that 

| 0 1 | = (2V5)-1 |K(/,/ ')I 
= (1/5) | (2TBx(E2)/e^(RnL \ g2 \ RnL) | . (16) 

Using Eq. (14), with R=1.2X10-ldA^ cm, we find 

g2= 8.827X 10-2 MeV/b for Tl205 

and 
g2= 8.862X 10-2 MeV/b for Tl2( 

Recent measurements,12 by Coulomb excitation of the 
nucleus, yield 

£*(£2) = e2(0.100±0.010)XlO-48
 c m

4 for Tl205 

and 

£*(£2) = e2(0.124d=0.014)X10-48 cm4 for Tl203. 

Thus, Eq. (16) yields 

| Oi | = (14.0± 1.4) keV for Tl205 

and 
|Oi | = (15.6±0.9)keV forTl203. 

Natural thallium is made up of 29.5% Tl203 and 70.5% 
Tl205, therefore, 

IF(2P-^lkS') = C2.95^i(203)+7.05^i(205)] 

X[2.95^i i (203)+7.05^n(205)]- 1 (12") 

for natural thallium, where AP(T) is defined in Eq. (12), 
with T referring to the atomic weight of the isotope 
being considered. In the treatment of Tl203 we have 
A~90 keV and, since \0\\ is approximately 16 keV, the 
parameter ^i2(203) is approximately 1.13 and is not 
sensitive to small changes of | Oi | . Since our sample was 
only 29.5% Tl203, the sensitivity of our results to slight 
variations in 3>i2(203) is negligible. For Tl205 we must be 
more precise, since | Oi | « A. In order to achieve agree-

555 5.70 575 5.80 5.85 
TRANSITION ENERGY (M eV) 

5.95 

12 F. K. McGowan and P. H. Stelson, Phys. Rev. 109, 901 
(1958), and private communication. 

FIG. 2. Spectrum IP —> IS for natural thallium. Case I : 
U = W(3D-+ IP). The circles are for transitions in Tl205 and the 
squares are for those in Tl203; the subscripts are F values. A circle 
and a square superimposed means the sum of the lines in both 
isotopes is being plotted. If we had assumed no mixing, we would 
have the lines indicated as (/) where / is the angular momentum of 
the initial 2P level. From Fig. 1 it can be seen that: E{\)=Ei 
and E(i)=c. Lines I and II are the composite lines (averages of 
the true spectral lines). 

The numbers are from Table I and there is an uncertainty of 
±0.011 MeV in the absolute scale. 

The total number of muons is 80(1+£7). 
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TABLE I. Spectrum of 2P-1S transitions for natural thallium W(2P -» 15) =0.97=fc0.09. 
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F 
Line Initial 

2 

2 

3 

3 

4 

4 

5 

5 

1 

2 

2 

3 

3 

4 

4 

5 

5 

I 

I I 

1 

2 

1 

2 

1 

2 

1 

2 

Iso
tope 

205 

205 

205 

205 

205 

205 

205 

205 

Total 

1 

2 

1 

2 

1 

2 

1 

2 

203 

203 

203 

203 

203 

203 

203 

203 

Composite 

Composite 

Relative No. of events*'b 

(Formula) (A) 

[3a1
2(a1

2+ai)+€r][7.05] 

[5a2
2(a2

2+52)+e2-][7.05] 

[3 ( l - a 1
2 ) ( l - a 1

2 -5 1 )+e 1
+ ] [7 .05] 

[5 ( l -a 2
2 ) ( l -a 2

2 -5 2 )+€ 2 +][7 .05] 

[3 ( l - a i a ) ( a i 2 +«i ) - e r ] [7 .05 ] 
[5( l -a 2

2 ) (a 2
2 +5 2 ) - € 2 - ] [7 .05] 

[3ai*(l-ai*-5i)-ei+i ;7.05] 
[5a 2

2 ( l -a 2
2 -5 2 ) -e 2+][7.05] 

[4*7/4110] 
[same as corresponding line for 205][2.95] 

[same as corresponding line for 205][2.95] 

[same as corresponding line for 205][2.95] 

[same as corresponding line for 205][2.95] 

[same as corresponding line for 205][2.95] 

[same as corresponding line for 205][2.95] 

[same as corresponding line for 205][2.95] 

[same as corresponding line for 205][2.95] 

2.F, isotopes {A i + [A JF~\~ \_A {]F) 

2 jf, isotopes ([A 2 ] i ?+ [A Z]F) 

Energy6'c U 
(Formula) (E) 

c+*A( l -y i ) 

c+iA(l-y2) 

c+iA(l+yi) 
c+iA(l+y2) 

c+iA(l-yi)-

c+iA(l-y2)-

c+hA(l+yi)-

c+iA(l+y2)-
c-b 

-Ex 

-Ex 

-Ex 

-Ex 

weighted average0 

weighted average0 

Casel d : 
= W(3D-> 

A 

8.21 

26.58 

3.42 

0.75 

4.87 

3.86 

4.66 

4.07 

42.12 

8.34 

14.72 

0.01 

0.00 

0.25 

0.02 

0.25 

0.02 

60.1=1=3.2 

62.0T3.2 

CaseII d : 
2P) =0.5265 U= 
£(MeV)e 

5.899 

5.930 

5.984 

5.954 

5.694 

5.725 

5.779 

5.749 

5.745 

5.930 

5.933 

6.026 

5.651 

5.654 

5.747 

5.744 

5.742 

5.930 

A 

12.93 

33.71 

1.18 

0.02 

3.53 

0.73 

3.51 

0.80 

60.00 

8.34 

14.72 

0.01 

0.00 

0.25 

0.02 

0.25 

0.02 

69.1±3.7 

70.9^3.7 

0.75 
E(MeV)e 

5.925 

5.931 

5.956 

5.949 

5.720 

5.726 

5.751 

5.744 

5.744 

5.929 

5.932 

6.025 

5.650 

5.653 

5.746 

5.743 

5.743 

5.930 

a All symbols in columns four and five refer to Tl205. The e's and S's are corrections due to the frequency dependence of the transition rates. Here A is 
the energy difference of the levels being mixed. The yF are the energy shifts of the corresponding F levels from the center of gravity of two mixed levels, 
in units of (A/2). [Note that as A approaches zero, yw approaches (2 | OF | /A); therefore, the energy shifts approach ( ± | OF \), where OF is the off-diagonal 
matrix element of the Hamiltonian connecting the two states.] For Tl203 we have used |Oi | «16 keV and A «90 keV, which gives yi2 =1.13. We calculated 
the A and E, and found that the effect was small. The experimental sensitivity to this isotope is reduced since only 29.5 % of the sample was Tl203. No 
matter what value of |Oi| we use for Tl203 (within the allowed range) our results are not significantly changed and those recorded in Table II are com
pletely unchanged. Note that CIF is the mixing coefficient, (1 — CLF2) representing the amount of mixing occurring. 

b We have not renormalized to 120 muons; we are discussing 80(1 -\-U) muons. 
c See Fig. 1 for the definitions of c, Ez, b, and A. We have used the relation Energy shift = ±COF = ZL&FAF. The energies for lines I and II are calculated 

as the following weighted average: Ei = [XF,isotopes EiAi + (E4)F(Ai)F-\-(E5)F(As)F2LAi']~1 and En = [2JP,isotopes(EI)F(A2)F + (EZ)F(AZ)F][An]-1, func
tions of c, b, and A. Their difference is a function of b and A. 

d Case I assumes that only radiative transitions occur; Case II assumes that the cause of the anomalous behavior in Bi acts also in Tl. We have defined 
U as the relative number of muons making radiative transitions from the |2Pi/2,0] to the | l-Si/2,0] state. The quantity W(3D —» 2P) represents the rela
tive number of muons fed to the 2P1/2 state in the 3D —> 2P transitions, the nucleus remaining in the ground state. We have for Case I: yi2=24±12 
[which gives y-P = 1.92, ai2 =0.6021, <Z22 =0.8608, 5i =0.0162, 82 =0.0030, ei~ =0.047, «2~ =0.052, ei+ =0.029, and e2

+ =0.009] for Tl205. We have for Case I I : 
yi2 =3.5 ±1.5 [which gives y2

2=1.10, ai2 =0.7673, a2
2 =0.9767, 5i«0.011, 52 -0.000, ei~ =0.043, e2~ =0.011, ei+ =0.013, and e2

+=0.000] for Tl2^. Here the 
8F are computed assuming feeding from an n =3 level, and are really upper limits to the true values. The sensitivity of the results to the values used for 
8F is negligible. In both cases, for Tl203, we have used yi2 =1.126 [which gives y$ =1.005, ai2 =0.971, a2

2 =0.999, and CF «0 ~8F1. The sensitivity of our 
results to our choice of the e's and S's for Tl203 is negligible in natural Tl. 

e We set (En— Ei), as a function of b and A, equal to A2p = (187.6±4.3) keV as observed in the experiment. We then solve for b, using the relations: 
A=Ex-b, and Ex = (205±2) keV (as reported in Ref. 12). This gives A = (17.3±4.8) keV for Case I, and A = (17.7±4.9) keV for Case II. We then set 
En equal to the observed value, £(2P3 /2-l5i/2) = (5.930 ±0.011) MeV, and solve for c. We find for Case I that c =5.932 MeV and for Case II that c =5.931 
MeV, which are used along with A to calculate the energies. 

merit with experiment [W(2P-* 1S) = 0.97±0.09], we 
need ;yi2(205) = 24±12 for Case I. Once ;yi2(205) is 
determined, y22, COF, (IF2, 8F, €F±, and the relative inten
sities may be calculated as described previously. The 
values of E\ and En may be determined (as functions 

of c and b) as described above Eq. (12); we use the 
known value12 of Ex. We then set (En—Ei), which is 
only a function of b, equal to the observed "fine-struc
ture splitting" (A2p) and solve for b. From Eqs. (4") 
and (15), noting that A — Ex—b, we find the required 

TABLE II. Comparison of results for natural thallium. 

Calculation 

Fine structure 
splitting 
b (keV) 

Off-diagonal 
matrix element8 

|0i|(keV) 

Energy from 0 to 
I lSi/,,0] 
c (MeV) 

Experiment,0 

Case I : £7 = 0.5265 
Experiment,6 

Case I I : £7 = 0.75 

Theory 

187.7±4.2 

187.3±4.4 

184.3b 

42 ±17 

14.0±5.9 

14.0±1.4< |Oi |«32.2±3.2d 

5.933±0.011 

5.932=1=0.011 

6.001=±=0.050b 

a The off-diagonal matrix element of the Hamiltonian (0i) is for F =1 states; we have shown that the element for F =2, (O2) is related to it by the 
equation 5 IO21 = | O i | . [See Eq. (15)]. 

b The theoretical values for b and c were reported in Ref. 1 and had been calculated by Ford and Wills. 
0 The spectra for these cases are in Table I. 
d The value of |Oi| is expected to be much closer to the lower limit (quadrupole distribution at radius R) than the extreme upper limit (quadrupole 

distribution at radius zero). 



1118 W I L L I A M B . R O L N I C K 

5.65 5.70 5.75 530 5£5 
TRANSITION ENERGY(MeV) 

530 5.95 

FIG. 3. Spectrum 2P —> IS for natural thallium. Case I I : 
[7 = 0.75. The circles are for transitions in Tl205 and the squares 
are for those in Tl203; the subscripts are F values. A circle and a 
square superimposed means the sum of the lines in both isotopes is 
being plotted. If we had assumed no mixing, we would have the 
lines indicated as (/) where J is the angular momentum of the 
initial 2P level. From Fig. 1 it can be seen that: E ( | ) = E i and 
E{^)—c. Lines I and II are the composite lines (averages of the 
true spectral lines). 

The numbers are from Table I and there is an uncertainty of 
±0.011 MeV in the absolute scale. 

The total number of muons is 80(1 + 27). 

value for the off-diagonal matrix elements of the 
Hamiltonian ( | 0 F | ) . We determine c by demanding 
that E n be equal to the observed E(2P3/2— IS1/2). If we 
assume that the unknown effect, which causes Bi209 to 
have TF(2P->15) = 0.7S, is acting in thallium and U 
is 0.75, we find that Qyi2(205) = 3.5=1=1.5] gives agree
ment with experiment (Case I I ) . The justification for 
this assumption is the fact that Tl is one proton below 
and Bi is one proton above a magic number closed shell 
(82). In Pb this effect must be absent in order to agree 
with experiment [W(2P^ IS) = 0.49=1= 0.07], which we 
suppose is due to the fact that the nucleus has a magic 
number closed shell (82 protons). See Table I and Figs. 2 
and 3 for the spectra. See Table I I for a comparison of 
the predicted values of \OF\, b, and c with the values 
expected from theory. 

VI. RESULTS FOR THALLIUM 

Figures 2 and 3 and Tables I and I I show the results 
of this investigation. The predicted values of b agree 

with that value calculated by Ford and Wills1 (within 
experimental error), and the predicted and calculated 
values of c agree within 1.2 standard deviations. Cases I 
and I I make radically different predictions for | Oi |, how
ever. Case I predicts an | Oi | which misses agreement 
with theory by less than 2 standard deviations, whereas 
the I Oi I predicted for Case I I shows excellent agreement 
with theory. [The closeness of agreement depends upon 
the accuracy of the value of A; in order to know A within 
10% we must know b to better than 1%. In lieu of this 
knowledge we have used the experimentally determined 
b, which is in agreement (within experimental error) 
with the theoretically calculated value.] 

For Case I we have assumed that U equals 
W(SD—•» 2P). If there were random feeding of the IP 
level we might expect the sum rule prediction, that U 
equals J, to be the case. This would give the experi
mentally required value of |Oi| as 44=L18, also about 
2 standard deviations from the theoretical expectation. 
If we assume |Oi| =14.0d=1.4 keV, then the experi
mentally determined value of b implies: W(1P—> IS) 
= 0.72=1=0.05 for Case I and W(2P-^ IS) = 0.97=4=0.05 
for Case II . These are to be compared with the observed 
value: W(2P-> IS) = 0.97=1=0.09. Case I misses agree
ment by 2 standard deviations, whereas Case I I shows 
agreement, as above. 

The fact that Case I misses agreement with theory by 
2 standard deviations is not convincing evidence that 
there must be another effect involved, nor is the agree
ment of Case I I with theory. We might be led to ques
tion our means of averaging the spectrum into two 
composite lines. (The lines of appreciable intensity are 
shifted from the composite lines by less than | the fine-
structure splitting. Therefore, if we had put in line 
shapes and then let the computer average the resulting 
spectrum into two lines, the resulting composite lines 
would not be too different from those obtained above.) 
However, the resonance phenomenon is negligible in 
Bi209 but1 W ( 2 P - ^ l S ) = 0.75=b0.05 [equals U, viz., 
discussion after Eq. (12)], and the assumption of the 
existence of a similar, unknown effect in thallium (Case 
II) gives us agreement with experiment. These two 
circumstances, together, may be taken as an indication 
that something besides radiative transitions is taking 
place in these nuclei [one proton (Bi) or one hole (Tl) 
above the closed proton shell (82)]. For Pb, a magic 
number nucleus, the unknown effect must be negligible. 
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APPENDIX: NONRESONANT EFFECTS 

The effect of nonresonant hyperfine mixing or a 
possible nuclear Auger effect13 on the relative number of 
radiative transitions from a set of levels ((nLj,N)) to 
the levels (J^L'j^N')) is to be investigated. 

The true eigenstates of our Hamiltonian may be 
written 

((nLjM,N))=(l-ZN'^\SNNf(a3a
f)\^\nLjM,N2 

+IlN>,a>SNN>(a,a')\a',N'2, (Al) 

where a represents the quantum numbers n, L, J, and M 
of the muon, M means Jz, and the prime refers to the 
quantum numbers of the functions mixed in by the 
hyperfine interaction. The SNN> (pi,af) are completely 
determined by the interaction. There are a finite 
number of nuclear states for which the level ((lSi/2,iV)) 
lies below the {(IPjfi)) levels. Likewise, there are only 
a finite number of levels which can bleed the ((2Pj-,0)) 
levels. The effects of such states (sum effect) have been 
shown to be negligible. 

We had been working previously in a representation 
in which the wave functions were eigenfunctions of F. 
The lifting of the F degeneracy by this interaction is 
negligible; thus, when we finally sum over all the states 
of a given n, L7 and N, the result will not depend upon 
which representation is used since they are related by a 
unitary transformation. We may use, therefore, product 
wave functions 

\nLjM,Nl=\nLjM)\N). (A2) 

We further assume that the energy differences involved 
are independent of / , which is approximately true. 

13 Suggested by J. Rosen (private communication). 
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The SNN* (<*,«')> a s w eU a s the operators for radiative 
or nuclear Auger transitions, may be written as sums of 
products of spin-independent operators in the muon 
coordinates with operators in the nuclear coordinates. 
The transition matrix element (T.M.E.) from ((nLj,N)) 
to ({n'L'j^N')), via radiative or nuclear Auger transi
tions, may be shown to have the same / dependence: 

T.M.E. = [ ( 2 / , + l ) ( 2 / + l ) ] 1 / 2 

\J J' p\( J J' p\ 
X E P . T ( )B, (A3) 

W L S\\-M Mf 7 / 

where \H\ is independent of / , M and / ' , M'. The p 
and 7 depend upon the operators and intermediate 
states involved, and S is | . Employing the orthogonality 
properties of the 3-j and 6-j symbols5 we find 

Y,J'MM> I T.M.E. 12= (2J+1)G , (A4) 

with G independent of J.u 

Thus, the nonresonant hyperfine mixing cannot affect 
the relative number of radiative transitions, as long as 
the interaction is small enough so that / is still a 
relatively good quantum number. The 3D —> IF tran
sitions show that the levels are grouped in the way 
expected if / were a good number. 

Since the relative number of possible Auger transi
tions is proportional to (27+1) , the relative number of 
muons remaining is unchanged from the value expected 
in the absence of such an effect. The relative number of 
radiative transitions is thus unaffected. 

14 The existence of such a theorem was recognized many years 
ago. See J. H. Van Vleck, Electric and Magnetic Susceptibilities 
(Oxford University Press, London, 1932), p. 195. 


